Package: tbsa (via r-universe)

September 9, 2024

Type Package
Title Turbine Blade Strike Analysis
Version 0.1.0
Author Travis Hinkelman
Maintainer Travis Hinkelman < thinkelman@esassoc.com>
Description R implementation of spreadsheet model provided by the USFWS for performing leading-edge blade strike analysis of hydropower turbines on fish.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Suggests tinytest
Depends R (>= 2.10)
Imports dplyr
Repository https://environmentalscienceassociates.r-universe.dev
RemoteUrl https://github.com/EnvironmentalScienceAssociates/tbsa
RemoteRef HEAD
RemoteSha 63eaeec9204c6881b9f74186da5db220d87130ef
Contents
discharge_coef
energy_coef
francis_alpha
francis_beta
francis_strike
kaplan_alpha
kaplan_strike

2 energy_coef

```
      propeller_beta
      6

      propeller_strike
      7

      rand_route
      8

      rotational_speed
      8

      route_data_ex
      9

      tbsa
      10
```

Index 11

discharge_coef

Discharge coefficient

Description

Non-dimensional discharge coefficient term incorporated into strike equations

Usage

```
discharge_coef(Q, D, rpm)
```

Arguments

Q	Turbine discharge	(cfs)
---	-------------------	-------

D Nominal diameter (ft) of runner

rpm Runner revolutions per minute

energy_coef

Energy coefficient

Description

Non-dimensional energy coefficient term incorporated into strike equations

Usage

```
energy_coef(H, D, rpm)
```

Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
rom	Runner revolutions per minute

francis_alpha 3

francis_alpha Francis alpha

Description

Angle (rad) to tangential of absolute flow upstream of runner

Usage

```
francis_alpha(Q, H, D, D1, D2, rpm, eta, opt, xi, B)
```

Arguments

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
D1	Diameter (ft) at the intake of the runner
D2	Diameter (ft) at the outlet of the runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity
xi	Ratio between Q with no exit swirl and Qopt
В	Runner height (ft) at inlet

francis_beta	Francis beta

Description

Relative flow angle (rad) at turbine discharge; used in strike equations

Usage

```
francis_beta(Q, D, D1, D2, rpm, opt, xi)
```

Q	Turbine discharge (cfs)
D	Nominal diameter (ft) of runner
D1	Diameter (ft) at the intake of the runner
D2	Diameter (ft) at the outlet of the runner
rpm	Runner revolutions per minute
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity
хi	Ratio between Q with no exit swirl and Qopt

4 kaplan_alpha

francis_strike	Francis blade strike probability

Description

Calculates leading-edge blade strike probability from a Francis turbine

Usage

```
francis_strike(Q, H, D, D1, D2, rpm, eta, opt, xi, B, N, L, lambda = 0.2)
```

Arguments

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
D1	Diameter (ft) at the intake of the runner
D2	Diameter (ft) at the outlet of the runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity
xi	Ratio between Q with no exit swirl and Qopt
В	Runner height (ft) at inlet
N	Number of blades
L	Fish length (ft)
lambda	Actual mortality correlation; influenced by many factors including unit type and fish species

kaplan_alpha	Kaplan alpha	

Description

Angle (rad) to tangential of absolute flow upstream of runner

Usage

```
kaplan_alpha(Q, H, D, rpm, eta, radius_ratio)
```

kaplan_strike 5

Arguments

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
radius_ratio	r/R where $R = 0.5 * D$; passage near hub (0.5), mid-blade (0.75), blade tip (1)

kaplan_strike	Kaplan blade strike probability
---------------	---------------------------------

Description

Calculates leading-edge blade strike probability from Kaplan turbine

Usage

```
kaplan_strike(Q, H, D, rpm, eta, N, L, lambda = 0.2, radius_ratio = 0.75)
```

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
N	Number of blades
L	Fish length (ft)
lambda	Actual mortality correlation; influenced by many factors including unit type and fish species
radius_ratio	r/R where $R = 0.5 * D$; passage near hub (0.5), mid-blade (0.75), blade tip (1)

6 propeller_beta

Description

Angle (rad) to tangential of absolute flow upstream of runner

Usage

```
propeller_alpha(Q, H, D, rpm, eta, opt, radius_ratio)
```

Arguments

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity

radius_ratio	r/R where $R = 0.5 * D$; passage near hub (0.5), mid-blade (0.75), blade tip (1)

propeller_beta	Propeller beta	

Description

Relative flow angle (rad) at turbine discharge; used in strike equations

Usage

```
propeller_beta(Q, D, rpm, opt, radius_ratio)
```

Q	Turbine discharge (cfs)
D	Nominal diameter (ft) of runner
rpm	Runner revolutions per minute
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity
radius_ratio	r/R where $R = 0.5 * D$; passage near hub (0.5), mid-blade (0.75), blade tip (1)

propeller_strike 7

propeller_strike

Propeller blade strike probability

Description

Calculates leading-edge blade strike probability from a propeller turbine

Usage

```
propeller_strike(
   Q,
   H,
   D,
   rpm,
   eta,
   opt,
   N,
   L,
   lambda = 0.2,
   radius_ratio = 0.75
)
```

Q	Turbine discharge (cfs)
Н	Net head on the turbine (ft)
D	Nominal diameter (ft) of runner
rpm	Runner revolutions per minute
eta	Turbine efficiency
opt	Ratio of turbine discharge at best efficiency to hydraulic capacity
N	Number of blades
L	Fish length (ft)
lambda	Actual mortality correlation; influenced by many factors including unit type and fish species
radius_ratio	r/R where $R = 0.5 * D$; passage near hub (0.5), mid-blade (0.75), blade tip (1)

8 rotational_speed

rand	_route	R
i anu.	_route	1

Random route selection

Description

Randomly select route for a fish through a project from a multinomial distribution based on routing probabilities.

Usage

```
rand_route(fish_num, route_names, route_probs)
```

Arguments

fish_num Number of fish in the simulation

route_names Vector of route names through a project

route_probs Vector of probabilities that fish enters each route; should sum to one.

rotational_speed Rotational speed

Description

Rotational speed

Usage

```
rotational_speed(rpm)
```

Arguments

rpm Runner revolutions per minute

route_data_ex 9

route_data_ex

Example Route Data

Description

Example route data used as input to the tbsa function. Includes all four route types and corresponds to the "Francis, Kaplan and propeller w spill, gates and bypass" example in the spreadsheet model.

Usage

```
route_data_ex
```

Format

A data frame with 9 rows and 16 variables:

route_name Unique name of a route through a project

route_prob Probability that a fish enters each route; should sum to one.

route_type Route type should be one of Francis, Kaplan, propeller, or bypass.

- D Nominal diameter (ft) of runner
- N Number of blades
- B Runner height (ft) at inlet
- **Q** Turbine discharge (cfs)

opt Ratio of turbine discharge at best efficiency to hydraulic capacity

H Net head on the turbine (ft)

rpm Runner revolutions per minute

xi Ratio between Q with no exit swirl and Qopt

lambda Actual mortality correlation; influenced by many factors including unit type and fish species

- **D1** Diameter (ft) at the intake of the runner
- D2 Diameter (ft) at the outlet of the runner
- eta Turbine efficiency

est_mortality Estimated mortality for routes without turbines, e.g., gates, spillways, fishways, etc.

10 tbsa

tbsa	Turbine blade strike analysis

Description

Runs stochastic simulation of turbine blade strike analysis based on input parameters in route_data

Usage

```
tbsa(fish_num, length_mean, length_sd, route_data)
```

Arguments

fish_num Number of fish in the simulation

length_mean Mean fish length (ft)

length_sd Standard deviation of fish length (ft)

route_data Data frame with input parameters for each route (see route_data_ex for example)

Examples

```
tbsa(10, 1.5, 0.25, route_data_ex)
```

Index

```
* datasets
    route_data_ex, 9
{\tt discharge\_coef, 2}
{\tt energy\_coef}, {\tt 2}
francis_alpha, 3
francis_beta, 3
francis_strike, 4
kaplan_alpha, 4
kaplan_strike, 5
propeller_alpha, 6
propeller_beta, 6
propeller_strike, 7
rand\_route, 8
rotational_speed, 8
route_data_ex, 9
tbsa, 10
```